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ABSTRACT 
A flux-difference splitting based on the polynomial character of the flux vectors is applied to steady Euler 
equations, discretized with a vertex-centred finite volume method. In first order accurate form, a discrete 
set of equations is obtained which is both conservative and positive. Due to the positivity, the set of 
equations can be solved by collective relaxation methods in multigrid form. A full multigrid method based 
on successive relaxation, full weighting, bilinear interpolation and W-cycle is used. Second order accuracy 
is obtained by the Chakravarthy-Osher flux-extrapolation technique, using the Roe-Chakravarthy minmod 
limiter. In second order form, direct relaxation of the discrete equations is no longer possible due to the 
loss of positivity. A defect-correction is used in order to solve the second order system. 
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INTRODUCTION 
A flux-difference splitting method based on the polynomial character of the flux-vectors was 
introduced by Dick1. This splitting is a pure Roe-type splitting, i.e. it satisfies the so-called 
U-properties introduced by Roe2. In contrast to that method, which is based on the quadratic 
character of the flux-vectors with respect to the variables the splitting 
relies only on the polynomial character with respect to the primitive variables p, u, v, p, avoiding 
in this way square root evaluations. The polynomial splitting was inspired by earlier work by 
Lombard et al.3, where the same idea was used in an approximate way. An algebraically exact 
formulation, however, is necessary to arrive at discrete equations which can be solved by 
relaxation methods. The polynomial splitting is simpler than that in Reference 2. This is mainly 
due to the omission of the secondary requirement that the discrete value of the variables coming 
into the definition of the splitting has to be unique. This condition of uniqueness defines the 
so-called Roe averages. In the polynomial splitting, three different average values of the convective 
velocity are used. The secondary requirements of uniqueness of average values is unnecessary 
and is demonstrated in this paper. 

Flux-difference splitting is more complicated than the related flux-vector splitting but has the 
advantage that direct relaxation of the discrete steady equations is possible, while flux-vector 
splitting techniques necessitate time stepping. This is due to the so-called positive character of 
the discretization obtained by flux-difference splitting and non-positive character of the 
discretization obtained when using flux-vector splitting. Multigrid methods based on relaxation 
are much more efficient than multigrid methods based on time stepping due to better smoothing 
properties. The flux-difference splitting generally used in relaxation type multigrid methods is 
that of Osher-Chakravarthy4. Examples of the use of this technique are given by Hemker, 
Spekreijse and Koren5-8 and is preferred because of its differentiability which allows local Newton 
linearization. It is generally believed that the quadratic convergence properties associated to 
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Newton linearization are important in reaching good multigrid efficiency. Roe-type splitting is 
not differentiable and as a consequence, only quasi-linearization with linear convergence 
behaviour is possible. In this paper, it is demonstrated that differentiability is not necessary to 
achieve good multigrid performance. A multigrid procedure, similar to the one used by Hemker, 
Spekreijse and Koren5-8, is employed but replacing the complicated differentiable 
Osher-Chakravarthy flux-difference splitting by the simpler, non-differentiable polynomial 
flux-difference splitting. The resulting method's performance is better when measured in terms 
of work units, where the work unit is the computational time for one basic relaxation on the 
finest grid and the work unit is much cheaper. 

Preliminary examples of the method used here were given earlier9,10. Since these publications 
the method has undergone further simplifications. In this paper, the principles of the method 
are briefly discussed and several examples showing its efficiency and the accuracy are given. 

POLYNOMIAL FLUX-DIFFERENCE SPLITTING 
Steady state Euler equations, in two dimensions, take the form: 

+ =0 (1) 

where the flux-vectors are: 
fT={pu, puu+p, puv, pHu}, gT={pv, puv, pvv+p, pHv} 

and where p is density, u and v are Cartesian velocity components, p is pressure, 
H=γp/(y-l)p+½u2+½v2 is the total enthalpy and γ is the adiabatic constant. 

Since the components of the flux-vectors form polynomials with respect to the primitive 
variables p, u, v and p, components of flux-differences can be written as: 

etc., where the overbar denotes a mean value. 
With the definition of , the flux-difference Δf can be written as: 

where ξ is the vector of primitive variables 
ξT={p,u,v,p} 
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Defining by = , the flux-difference Δf is given by: 

(2) 

By denoting the first matrix in (2) by T, it is easily seen that the flux-difference Δg can be written 
in a similar way as: 

where 
Any linear combination of Δf and Δg can be written as: 

ΔΦ= nxΔf + nyΔg = ĀΔξ = TÃΔξ (3) 
where 

(4) 

with 
It is easy to verify that the matrix has real eigenvalues and a complete set of eigenvectors. 
For , the eigenvalues are given by: 

(5) 
where 

The matrix Ã can be split into positive and negative parts by: 
Ã + =RΛ + L, Ã = RΛ-L 

where R and L denote right and left eigenvector matrices, in orthonormal form and where 

with = max(λi,-,0), =min(λi,-,0). 
Positive and negative matrices are matrices with non-negative and non-positive eigenvalues 

respectively. 
The matrix T is the transformation matrix between differences of conservative variables and 

differences of primitive variables, i.e. 
Δζ=TΔξ (6) 

where ζ is the vector of conservative variables 
ζT={p,pu,pv,pE) 

with the total energy 
E=p/(γ-1)p+½u2+½v2 
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A combination of (3) and (6) gives: 
ΔΦ = TÃT - 1 Δζ=TRΛLT - 1 Δζ=AΔζ (7) 

Furthermore, we have 
A+ = TRΛ+LT-1 A- = TRΛ -LT -1 (8) 

This allows a splitting of the flux-difference (3) by: 
ΔΦ = A+Δζ+A-Δζ (9) 

VERTEX-CENTRED FINITE VOLUME FORMULATION 
Figure 1 shows the control volume centred around the node (i,j). With piecewise constant 
interpolation of variables, the flux-difference over the surface Si+½ of the control volume can be 
written as: 

ΔFi,i+1 = Δyi+½ Δfi,i +1+Δxi+½Δgi,i+1 

= Δsi+½(nxΔfi,i+1+nyΔgi,i+1) (10) 
where Δsi+½ is the length of the surface and where nx and ny denote the components of the unit 
outward normal to the control surface. 

With the notation of the previous section, the flux-difference is: 
ΔFi,i+1 = F i+1-F i=Δs i+½Δ i , i+1Δζi,i+1. (11) 

Furthermore, the matrix Aii+1 can be split into positive and negative parts. This allows the 
definition of the absolute value of the flux-difference by: 

|AFi,i+1| = Δsi+½(A+
i,i+1-A-

i,i+1)Δζi,i+1 (12) 
Based on (12), an upwind definition of the flux is: 

Fi+½=½[Fi+Fi+1-|ΔFi,i+1|] (13) 
The fact that this represents an upwind flux can be verified by writing (13) in either of the two 
following, equivalent, ways, 

Fi+½= Fi+½F i , i + 1 -½ |ΔFi,i+1| 
= Fi+Δsi+½A-

i,i+1Δζi,i+1 (14) 
Fi+½ = Fi+l-½ΔFi,i+1-½|ΔFi,i+1| 

=Fi+1-Δsi+½ Ai,i+1Δζi,i+1 (15) 
Indeed, when Ai,i+1 has only positive eigenvalues, the flux Fi+½ is taken to be Fi and when 
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A i , i + 1 has only negative eigenvalues, the flux Fi+½ is taken to be F i + 1 . The fluxes on the other 
surfaces of the control volume Si-½, Sj+½, Sj+½,Sj-½, can be treated in a similar way. With (14) and 
(15), the flux balance on the control volume of Figure 1 has the form (omitting non-varying 
indices): 

Δsi+ ½A - i , i+ 1[ζi+ 1-ζi] + Δsi-½A+
i,i-1[ζi-ζi-1] + 
Δsj+½A-j,j+1[ζj+1-ζj + Δsj-½A+j,j-1[ζj+1-ζj-1] =0 (16) 

The set formed by (16) for all nodes is a so-called positive set. This can be seen by writing (16) as: 
Cζi,j=Δsi-½A+

i,i-1ζi-1+Δsi-+½(-A-i,i+1)ζi+1 + 
Δsj-½A+j,j-1ζj-1 + Δsj+½(-A-

j,j+1)ζj+1 ( 1 7 ) 
where C is the sum of the matrix coefficients in the right hand side and where these coefficients 
have non-negative eigenvalues. 

As a consequence of the positivity, a solution can be obtained by a collective variant of any 
scalar relaxation method. By a collective variant it is meant that at each node, all components 
of the vector of dependent variables ζ are relaxed simultaneously. 

In practice, the flux-balance (16) is formed by summing expressions of type (14) over all 
surfaces, using the appropriate components of the unit outgoing normal nx and ny in the definition 
of the Jacobian (7). 

BOUNDARY CONDITIONS 
Figure 2 shows the half-volume centred around a node on a solid boundary. This half-volume 
can be seen as the limit of a complete volume in which one of the sides tends to the boundary. 
As a consequence, the flux on the side Sj of the boundary control volume can be expressed, 
according to (15), by: 

Fj-ΔsjA+i,j(Ζj-Ζj+1) (18) 

where the matrix Ai,j is calculated at the node (i,j). 
With the definition (18), the flux balance on the control volume at the boundary takes the form 

(16) in which a node outside the domain is also included. This node, however, can be eliminated. 
On a solid boundary, two eigenvalues of the matrix Ai,j are zero due to the boundary condition 
of tangentiality: 

λ1= = 0 , λ2= =0 
The third and the fourth eigenvalues are given by: 

λ3= , λ4=-
As a consequence, the rank of the matrix A+i,j is equal to one. This means that premultiplication 
of the flux-balance on a solid boundary by a left eigenvector associated to a zero eigenvalue of 
A+i,j, yields an equation where the outside node is eliminated. This results in three equations, 
which are supplemented by the boundary condition of tangentiality. A similar procedure can 
be used at inflow and at outflow. At subsonic inflow, one equation is obtained and three additional 
relations are determined from the boundary conditions. At subsonic outflow, three equations 
are obtained and one boundary condition is to be given. Physically, at inlet stagnation pressure, 
stagnation temperature and flow direction are to be prescribed. At outlet, Mach number can 
be prescribed. Explicit expressions of the combinations of the equations at boundaries are given 
in Reference 1. 

Due to the linearity of the condition of impermeability, the set of equations on a solid boundary 
is a quasi-linear set which is similar to the set in the flow field. At inflow and outflow boundaries, 
the physical boundary conditions are highly non-linear combinations of the dependent variables. 
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Therefore, the introduction of the boundary conditions at inlet and outlet, in the way as described 
above, necessitates iteration which is a further complication. Therefore, it is better to treat the 
nodes at inlet and outlet as auxiliary points and to determine the variables at these points by 
extrapolation. At inlet, the Mach number is extrapolated along streamlines. Together with the 
given boundary conditions, this determines all flow variables directly. At outflow the stagnation 
values and the flow direction are extrapolated along streamlines. Together with the prescribed 
Mach number, again this determines all flow variables directly. 

SECOND ORDER FORMULATION 
In order to obtain second order accuracy, the definition of the flux (13) is to be modified. First, 
we remark that, using (7), the flux-diflerence (11) can be written as: 

(19) 

where the superscript n refers to the nth eigenvalue and where rn and ln denote the nth right 
and left eigenvectors, rn and ln are components of TR and LT-1. By denoting the projection of 
Δζ i , i+1 on the nth eigenvector by: 

σni +½i = lni+½ Δζi,i + 1 

(19) can be written as: 
(20) 

where ΔFn
i,i+1 is the component of the flux-difference associated to the nth eigenvalue and τni+½ 

is the projection of the flux-difference on the nth eigenvector. 
Using (20), the first order flux (13) can be written as: 

(21) 

where the + and — superscripts denote the positive and negative parts of the components of 
the flux-difference, i.e. the parts obtained by taking the positive and negative parts of the 
eigenvalues. According to Chakravarthy and Osher11, assuming a structured sufficiently smooth 
grid, a second order flux corresponding to (21) can be defined by: 

(22) 

where 

(23) 

with a similar definition for 
Clearly (23) is constructed by considering a flux-difference over the surface Si+½, i.e. using 

the geometry of this surface, with data shifted in the negative i-direction. σni-½ represents the 
projection of the shifted difference of the dependent variables on the nth eigenvector of the 
original flux-difference. The second order correction could also be defined using the τ-variables, 
i.e. the projections of the flux-difference. This would mean that the eigenvalue in (23) is also 
shifted. In practice, there is little difference between the results of both formulations. In the 
sequel we use (23) only. 

The definition (22) corresponds to a second order upwind flux. This can be clearly seen by 
considering the case where all eigenvalues have the same sign. Second order accuracy can also 
be achieved by taking a central definition of the flux vector: 

i+½ = ½(Fi + Fi+1) (24) 
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As is well known, using either (22) or (24) leads to a scheme which is not monotonicity 
preserving so that wiggles in the solution become possible. Following the theory of the flux 
limiters12, a combination of (22) and (24) is to be taken. This has the form: 

(25) 

with 
(26) 
(27) 

where Lim denotes some limited combination of both arguments. We choose here the simplest 
possible form of a limiter, i.e. Lim = MinMod, where the function MinMod returns the argument 
with minimum absolute value if both arguments have the same sign and returns zero otherwise. 
Using the limiter to the vectors (26), (27) means that the limiter is used per σ-component. 

In the vicinity of boundaries, some components of flux-differences in (26) or (27) do not exist. 
For these components, the limiter then returns a zero. This does not degrade the second order 
accuracy since, due to the characteristic boundary treatment, these components do not enter 
the boundary equations. The foregoing second order correction procedure is called the 
flux-extrapolation technique. In contrast to the more common MUSCL-technique5-8, it gives 
the second order correction in an explicit way. Flux-extrapolation is therefore much simpler to 
use with defect-correction. 

MULTIGRID DEFECT-CORRECTION FORMULATION 
Since, for the discretization obtained by the second order formulation, the positivity is not 
guaranteed, a relaxation solution is impossible. Therefore, following Hemker5, a defect-correction 
formulation is used as solution procedure. By denoting, symbolically, the first order and second 
order formulation on the finest grid by: 

L1h=rl
h (28) 

L2
h=r2h (29) 

a defect correction means that (28) is replaced by: 
L1

h = r1
h + [(L1

h-r1
h)-(L2

h-r2
h)] (30) 

where L and r indicate left and right hand sides. 
In (30) the difference of the defects of the first and second order discretization is added to the 

right hand side of the first order system. This difference is called the defect-correction. A multigrid 
method based on the first order system is used in which for every visit to the finest grid the 
defect-correction is recalculated using the newest values of the variables. Figure 3 shows the 
cycle-structure of the multigrid method. Both the starting cycle and the repeated cycle have a 
W-form. A full approximation scheme (FAS) on the non-linear equations (16) is used. The 
relaxation algorithm is Gauss-Seidel in lexicographic order, but alternately starting in the lower 
left corner going up in j-direction and in the upper left corner going down in j-direction. Three 
(or four) relaxations are done per level. In relaxing the set of (16), the coefficients are formed 
with the latest available information. This means, for instance, that the coefficient A+

i,i-1 is 
evaluated with the function values in node (i,j) on the old level, but with the function values in 
node (i— 1 J ) on the new level. After determination of the new values in node (i,j), no updates 
of coefficients and no extra iterations are undertaken. This means that the set of (16) is treated 
as a quasi-linear set and that the multigrid procedure corresponds to a Picard iteration and not 
to a Newton iteration. As restriction operator for residuals, full weighting in the flow field and 
injection at the boundaries is used. The restriction for function values is injection and the 
prolongation operator is bilinear interpolation. 
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In Figure 3, the operation count is indicated for three relaxations per level. A relaxation on 
the current grid is taken as one local work unit. A residual evaluation plus the associated grid 
transfer is also taken as one local work unit. Hence, the 5 in Figure 3, in going down, stands 
for the construction of the right hand side in the FAS formulation, three relaxations and one 
residual evaluation. With this way of evaluating the work, the cost of the repeated cycle is 
13.0625 work units on the finest level. The cost of the starting cycle is 7.5 work units. For four 
relaxations per level, this is respectively 16.6875 and 9.8125 work units. 

COMPUTATIONAL EXAMPLES 
Figure 4 shows the GAMM-test problem for transonic flows13. The finest grid has 97 x 33 
nodes. The Figure shows every other gridline. The circular perturbation of the channel has a 
height of 4.2% of the chord and the height of the channel is 2.073 times the chord. The incoming 
flow is uniform and the Mach number of the flow at outlet is prescribed to be 0.85. 

Figures 5 and 6 show the first order and second order iso-Machline results. There is almost 
no difference between both results. This can be explained by the alignment of the shock with 
the gridlines. 

Figure 7 shows the convergence behaviour of the first order and second order multigrid 
methods. The calculation starts from a uniform flow with Mach number 0.85 on the coarsest 
grid and three relaxations are done per level with a relaxation factor of 0.9. The residual shown 
is the maximum over all equations and all nodes after normalizing the equations. The 
normalization process means that all variables are divided by their value at inflow and that the 
smallest surface of the smallest cell in the flow field is set equal to 0.5 (the value 1 seems not 
to be fair). For the second order method, the defect-correction is applied from the first cycle. 
The residual reduction in the first order method is about 0.927 per work unit. For the second 
order formulation it is about 0.944 per work unit in the first phase of the convergence (up to 
about 120 work units). The residual reduction per cycle for the second order method is about 
0.444. This is not an excellent but is an acceptable multigrid performance. Some saturation 
occurs after the first phase of the convergence, which is typical for a defect-correction procedure. 
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In practice, this saturation has not much meaning since the result obtained at a convergence 
level of 10 -4 cannot be distinguished from the fully converged solution. 

Figure 8 shows a test problem as used by Koren and Spekreijse8. Again the grid has 97 x 33 
nodes and the Figure shows every other gridline. The circular perturbation of the channel has 
a height of 4% of the chord and the height of the channel is equal to the chord. The oncoming 
flow is uniform with Mach number 1.40. 

Figures 9 and 10 contain plots of the first order and the second order iso-Machline results 
and show that the difference between both solutions is very large. In the first order solution, 
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the interaction between the reflected shock wave and the shock wave coming from the trailing 
edge of the circular perturbation cannot be seen. This interaction is clearly visible in the second 
order solution. This test problem is thus much more critical than the GAMM-test problem. 

Figure 11 shows the convergence behaviour of the first order and the second order multigrid 
methods. The procedure is identical to the one for the first test case, apart from the relaxation 
factor. For this supersonic problem, this factor is set equal to 1. The residual reduction in the 
first order method is about 0.800 per work unit which degrades to about 0.970 per work unit 
for the second order method. This is 0.675 per cycle. The difference in performance is now much 
larger between first and second order formulations due to the large difference in solutions. 

The accuracy obtained for this test problem is comparable to the accuracy obtained by Koren 
and Spekreijse8. The convergence of the method used here is better in terms of work units. This 
better performance is obtained despite the non-differentiability of the splitting technique used. 
Moreover, the work unit here is much cheaper due to the simplicity of the splitting technique. 
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Figure 12 shows a third test problem. Again the grid has 97 x 33 nodes and every other gridline 
'is shown. The channel has a more or less gradual step and the oncoming flow is uniform with 
Mach number 2.9. 

Figures 13 and 14 show the first order and second order iso-Machline results. The conclusion 
with respect to accuracy is more or less the same as in the second test case. 

The calculation starts from a uniform flow with Mach number 2.9 on the coarsest grid. This 
test problem is somewhat more difficult than the previous test problems. To obtain reasonable 
convergence, four iterations per level are now necessary and the defect-correction cannot be 
started from the first cycle. Figure 15 shows the convergence behaviour for the first order method 
and the second order method with defect-correction used after the second full cycle. The residual 
reduction of the second order method is 0.947 per work unit, or 0.400 per cycle. The residual 
reduction on itself is good but there is an important delay in convergence due to the jump in 
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residual after switching on the defect-correction. Overall the performance is acceptable and a 
residual of 10-4 is reached after about 150 work units. 

CONCLUSION 
It has been shown that using a very simple flux-difference splitting technique as a basis for a 
relaxation type multigrid method, accuracy and convergence speed can be comparable to what 
is obtained with more common, more complicated techniques. 
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